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The peculiarity of transition through the velocity of sound in a plane 
nozzle, i.e., in the case when the tangent to the sonic line coincides 
with the direction of characteristics which pass through the axis of the 
channel, was pointed out by Khristianovich [l 1. Later Frankl, on the 
basis of a hodograph transformation, investigated in detail the character 
of a plane stream in the vicinity of the sonic line [2 1. Applying a 
direct method Falkovich obtained the main term of the solution in the 
form of a third degree polynomial which considerably simplified all the 
calculations of the transition region of a nozzle [ 3 1. In the present 
work on the basis of this solution, some properties of flow with axial 
symmetry are investigated. The investigation is based on the method of 
Falkovich, since. in this case, it is not necessary to make use of the 
hodograph transformation. 

1. Analytical nozzles. The equations of transonic flow of a gas 
with axial syrnnetry in a cylindrical coordinate system have the form: 

- (x + 1) NJ, + a*Vr + a*V /r = 0, u, = v, (1.1) 

where II and V are the additions to the velocity along the axes n and r 

which is equal to the critical velocity a and which is directed along 
x-axis; K is Poisson’s adiabatic index; the subscripts denote partial 
differentiation. 

It is well known that the flow near the throat of a nozzle is not 

necessarily free from discontinuities in density 1 1,2 1. ‘Iberefore in the 
computation of a nozzle initial conditions are given in terms of an ana- 

lytic velocity distribution along the nozzle axis rather than in terms of 

prescribed wall shape. From the equations of motion the velocity potential 
corresponding to these functions is determined. Two stream lines in this 
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flow field which are symnetrical with respect to the x-axis, are then 
taken as the walls of the nozzle. 

It should be noted now that in going over from exact equations of gas 
dynamics to the simplified equations (1.1) we have to deal in essence 
with linear theory, though the equations (1.1) are not linear. But it 
follows from this that the quantity: 

u,=co inpx x=0, r=O (V=O llpn r=o) (1.2) 

is a unique numerical parameter which describes the flow along the nozzle 
axis. 

In the paper 14 1 the system of equations (1.1) is shown to be in- 
variant under the continuous group of transformations: 

U,(z, r) = a2(n-1)U(as, anr), V,(z, r) = as(n-l)V(az, a"r) (1.3) 

(where a and n are arbitrary constants). If in the formulas (1.3) we take 
n = l/2, then the initial data (1.2) will also be invariant with respect 
to the indicated group of similarity transformations. Hence we conclude 
that the values ra2U and re3V can be functions only of one variable, 
namely [= xre2. ‘lhus the flow in an analytical nozzle in the neighbor- 
hood of its center will be self similar. To determine it we assume: 

of 

l.l=(Kflj-iJ/a*, v=(X+l)V/Q* (1.4) 

lhen equations (1.1) take the form: 

-uux+vr+v/r=o, u, = v, (1.5) 

Conforming to the outline above we look for a solution of the system 
equations (1.5) in the form: 

u = r'j(i), v = r"g(F), i=xjr* (1.6) 

The functions f and g satisfy the system of ordinary differential 
equations 

/j'- 4g + 2ig' = 0, 2::j' + g'- 2j = 0 (1.7) 

Eliminating the function g from the system (1.7) we obtain, for the 
determination of function f, ,a second order differential equation: 

(j-44fjI"+j'2+41P-4j=O (1.8, 

Equation (1.8) has a simple particular solution, which we shall call 
the basic solution, 

j=$n*-t_Ai (1.9) 

where A is an arbitrary constant, equal in mwitude to the derivative 
ax at the center of a nozzle. UsinK equations (1.6) and (1.0) we find 
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u= Ax++AW, v=+Aaxr++A3r3 (1.10) 

Formulas (1.10) describe the flow in the neighborhood of the transi- 

tion surface in nozzles of revolution. Assunin~ the velocity to increase 

along the x-a&, we have A > 0. 

2. Investigation of the flow ia the neighborhood of the 
nozzle center. &e of the properties of flow in plane Lava1 nozzles, 

as determined by Frankl, is the many-valued character of the transfozma- 

tion of the physical plane in the hodoRraph plane in the nei#&orhood of 

the sonic line. It is found that in a complete circuit around the origin 
of coordinates the region between two characteristics in the hodograph 

plane is traversed three times [2 1. We shall show in this section that 

in the case of axial syzzsetry also there is not singlevalued corres- 

pondence betmen the xr and uu planes. Indeed, let us look at the Jacobian 
j- d(u, u>/'d (x, r 1 of the transformation (1.10). Equating this Jacobian 

to zero detexmines the branch line (L-curve) in the XT plane, along which 

the one-to-one correspondence between the physical plane and the hodo- 

graph plane is violated. Since j = l,/2 A3 h - l/8 Ar2 1, the equation of 

the L-curve will be 
x= $Ara (2.1) 

Hence it follows that, as in the case of the plane nozzle, the L-curve 

is concave toward the oncoming stresm. ‘lhe transformation of the branch 
line in the hodograph plane is S-curved, the equation of which is written 

in the form 
u = + 2)‘l’ (2.2) 

To clarify the position of the branch line in the physical plane and 

in the hodograph plane, let us find, in addition, the equations of the 
characteristics which pass through the nozzle center, and also the equa- 

tions of the lines IA = 0 and v = 0. ‘lhe characteristics are determined 

by the differential equation 

(dx/dr)2 = u= Ax++A2r2 (2.3) 

These give the equations of the characteristics which pass through 
the nozzle center and which are tangent to the sonic line; in future such 

characteristics will be called “singular” characteristics. lhey are 

x - t ,4 (1 + vI’-j-) r2 (co+- characteristic) 

x- $A(1 - fl)r2 
(2.4) 

(co-- characteristic) 

Substituting formulas (2.4) into equations (1. lo), the characteristics 

in the hodograph plane (r - characteristics) are obtained. 
u = 4’1.u’I. 

(2.5) 
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From fonnulas (2.51 it follows that both co - characteristics in the 
physical plane transfow into different branches of the sama semicubical 
parabola in the hodograph plane. Let us write now the equation of the 
sonic line; in the hodograph plane the sonic line is the axis u = 0; in 
the physical plane its equation will be 

x=-+x (2.6) 

lhe equation of the line on which the radial velocity caaponent 
vanishes in the hodograph plane has the fon u = 0, while in the physical 
plarsc 

3m-+2 (2.7) 

It is seen from formulas (2.6) aud (2.7) that the sonic line and the 
line 1) = 0 are concave, as in plane nozzles, with respect to the super- 
sonic flow. It follows from equations (2.1) and (2.71 that in the case 
of flow with axial synxuetry the radius of curvature of the branch line 
is not equal to the radius of curvature of the sonic line, instead it is 
equal to the radius of curvature of the line along which the velocity of 
the stream is parallel to the nozzle axis. 

'lhe neighborhood of the nozzle center is shown in FiR. 1 where the 
relative positions of the sonic line of the characteristics, of the line 
of zero radial velocity and of the branch line are shown. As the values 
of r can only be greater than, or equal to zero, only the upper half of 
the physical plane needs to be considered. A transformation of the 
neighborhood of the origin of coordinates in the uu plane, which has the 
form of a folded surface, is shown in Fig. 2. Grresponding regions in 
Fig. 1 and 2 are denoted hy the same numbers. F&ions IV, V and VI of the 
xr plane map into the same single region of the uu plane. 

Fig. 1. Fig. 2. 

Note: It should be noted that the branch line in the case considered 
does not coincide with the characteristic which passes through the nozzle 

center, as was the case in two dimensional flows. This is due to the fact 
that the equations of motion in the case of axial symmetry are irreducible 
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owing to the presence of an additional term in the equation of continuity. 

As formulas (2.4)) (2.6) and (2.7) show, the corresponding curves in 

the case of axial symmetry are situated closer to the vertical line than 
in the plane case if in both flows the derivative II at the nozzle center 
is the same. The flow in a nozzle of revolution is therefore more uniform 

than in a plane nozzle. From this point of view the construction of 
nozzles of revolution is to be favored over that of plane nozzles with 
the same rate of acceleration from subsonic to supersonic flow. 

3. Nozzles with surfaces of weak discontinuities. 1. Consider 
now the case when weak discontinuities, i.e. discontinuities of first 
derivatives of velocity components are fonued along the Mach lines, 

originating from the center of the nozzle. For this purpose we shall 
assume that A in formulas (1.10) in regions I and II is equal to some 
value A,, while in region IV it is equal to some other value A,, where 
A, f A,. Assuming that limiting; values of the derivative uz at the nozzle 

center when approached from both left and right are positive, we find 

that A, > 0 and A, > 0. Then in regions I and II we shall have: 

U = A,z+ $ArP, u = $ A,22r + $r1,3r3 (3.1) 

and correspondingly, in retion VI 

ZJ, = A,J: + $rl,r?, 2: = f Az2xr + $ A,“r3 (3.2) 

The equations of the co - characteristics, using equations (2.3), 

(3.1) and (3.2), can be written in the form 

J: = $ Jr (1 - VT) r2 co_- characteristic 

II: = $_$ (1 + I/S-)9 
(3.3) 

CO+- characteristic 

We now note that the equations obtained coincide with the lines c h 
5 = const (see Section 1). Therefore the solution of the equations of 

motion (1.5) in regions III, IV and V can be expected, as before, to be 

of the form (1.61, reducing the problem in this manner to the integration 

of an ordinary differential equation (1.8). For the co - characteristics 

the follow+ equations apply: 

U = $_A,'(3 - k'S)rZ on Co_- characteristic 

u = $A,? (3 + ],‘F) r2 
(A/1) 

on c3+- characteristic 

Usiw formulas (1.61, (3.3) and (3.4) two limiting conditions for the 

integration of equation (1.8) are obtained: 
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Since A, > 0 and A, > 0, it follows that from equations (3.5) 

El< 0, Ea > 0 (3.6) - 
2. ‘lhe method of investigation of the formation of weak discontinuities 

along a Mach line can be simplified further if we make use of the in- 

variance of equation (1.8) with respect to the group of similarity trsns- 

formations a(S) = a-*f(&, where a is any constant not equal to zero. 

Assming therefore 

j = W(q), -g = Y, q = ln(E! (3.7) 

equation (1.8) is written in the form 

dY ‘P+7YF+6F~-8’3’-4F 

dP= Y(4-F) (3.8) 

‘lhe basic problem is now reduced to the investigation of equation 

(3.8). ‘Ih e general picture of the field of its integral curves is illus- 

trated in Fig. 3. This p;raph clarifies the character of singular points 

of the curves ‘4,. and \p2*, at which the value of the derivative d Y /dF 

is equal to zero, and also the character of the lines F = 4’and Y = 0, 

where the derivative dY/dF becomes infinite. 

For our purpose we need to know the location of the points 

A (0, 0)s C[4,-2]Q(C’S- - I)19 D [4, - 2 I/T(l/S-t I)1 

and of the particular point E which recedes to infinity and which is 

reached by going down along the line Y= - 2F. It can be shown that the 

point A corresponds to the x-axis; the point C corresponds to the co - 

characteristic, while the point D corresponds to the co - characterikic 
determined by equation (3.3); the point E corresponds to the r-axis. 

Fran equations (1.6) and (3.6) it follows that the ordinate corresponds 

to the sonic line, one half of the plane to the right of this axis corres- 

ponds to the region of supersonic velocities and the left half of the 

plane corresponds to subsonic velocities. When moving alona some integral 

curve in the FY plane, the corresponding lines 5 = const will describe 

a certain region in physical space. Hence it is clear that 6 must not 
have any extreme values, because otherwise we would get a multivalued 

physical xr plane, in which the flow will be superimposed upon itself. 
A line on which the value 5‘ is stationary is a limit line. Using equa- 

tions (3.7) and (3.8) it is easily seen that from this point of view 

transition through the line F = 4 is impossible. The only exceptions are 

those integral curves which pass through the particular points C and D. 

Using formulas (3.7) we have 

f’ = E (2F + ‘r) (3.9) 
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From this equation we can obtain the equation of the integral curve K 
which is the transformation of the basic solution (1.9) in the F$ plane; 

this equation does not depend on the constant A 
-_ 

Y= --2(1+FTVl+F) (3.10) 

For motion in the physical plane from the subsonic region to the 

supersonic region the motion along the curve (3.10) will be in the 

direction indicated by the arrow in Fig. 3. 

Fig. 3. 

Consider now flows with weak discontinuities along characteristics 

originating at the center of the nozzle. In this case the flow in regions 

I and II will be, as before, represented by the segment of the K-curve 

between points A and D, while the flows in region VI correspond to the 

segment of the K curve between the points C and A, because equation (3.10) 

does not depend on values A, and A,, On the characteristics the values of 

f are continuous, but the values of f’ have discontinuities. Hence-it 

follows that the values F must also be discontinuous and equal to 4, while 
the values $ must undergo discontinuities of the first kind. Therefore 
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when moving; along the segment of the K-curve in the direction away from 

the subsonic region and reaching; point D, we have a unique possibility 

to realize flow with weak discontinuities junping from point D to point 
C. From the point C we can move alona any integral curve that is bound 

by the two branches of the K-curve to the point E, and then return along 

the continuation of this curve to the point C again. In the limiting 

case the motion will take place along the K-curve which goes in the 

opposite direction; namely by jumping from the point D to the point C, 
continuing from this point along the K-curve to the point E, then along 

its continuation to the point D and again jumping to point C. 

From the investigation of the field of the integral curves of equation 

(3.8) we can derive several interesting properties about. flows with weak 

discontinuities. 

Since the flow past the co+ - characteristic is mapped in the interval 

of the K-curve between points C and A, it follows that there are no dis- 

continuities in the first order derivatives of the velocity components 

on the co+ - characteristic, although they did arise on the co_ - 

characteristic. Thus, weak discontinuities (i.e. discontinuities in first 

derivatives) do not reflect from the nozzle center even in the case when 

the nozzle is axially symmetrical. 'lhis property is derived from the 

degeneracy of the equations of motion at this point into equations of 

parabolic type. An exception to this behavior is the limiting case, when 

the flow between singular characteristics reflects in the K-curve extend- 

ing in the opposite direction. In this case weak discontinuities form on 

both the co_ - characteristic and the co+ - characteristic. If we move 

from the point C along the integral curve situated above the dividing 

curve K, then f’ for the co_ - characteristic becomes infinite. 

3. We now clarify the character of the integral curves of equation 

(1.8) which correspond to the curves in the F$ plane considered above. 

First it is to be noted that the magnitude of the discontinuity in the 

derivative uZ for the co_ - characteristic may not be an arbitray quan- 

tity. Indeed, computing from formula (3.9) the value of f'so we approach 

the co__ - characteristic from the left, we have 

(3.11) 

Hence, denoting the mmitude of the discontinuity in the derivative 

uZ across the co_ - characteristic by [u>, we Ret 

[u.rl = -+-A,(:,- l/s, <o 
Thus, if we assume a given flow on the left side of the co_ charac- 

teristic, we can obtain a different flow on its right side. However, the 

value of the .jump [ul across the line of contact of the two flows is 

constant. 
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Lt. us consider now an inteRra curve of equation (1.8) corresponding 

to some curve in the F$ plane, originating and terminating at the point 

C. CAI the co+ - characteristic, when approached from the right (and from 

the left), we have 

yp’ z= A, (3.12) 

bations (3.5), (3.11) and (3.12), which have to be satisfied at the 

limits of inteRrating for equation (1.8), may be written in the form 

fl = 4E12, fl’ = 2 (1/r- 1) 21 where 5 = 51 
(3.13) 

jz = 4&2, fz’ = 2 (1/S- 1) ?z where 5 = 52 

‘Ihe reduction of the last four equations is made possible by the fact 
that the limits of the interval P([,,fl) and Q(t2,f2) are the singular 

points of equation (1.8), through which pass an infinite number of inte- 

gral curves with the same slope. Indeed, computing the roots .f’* of the 

equation f'* + 4J f’ - 16J*= 0, we have 

f;:2 =.2(+-n-?)i (3.14) 

'Ihis also follows frcm the fact that the point C is a singular point 

of equation (3.8). Using inequalities (3.6), it follows from formulas 

(3.13) that fl’ < 0, ,f2’ > 0, i.e. the function ,f is not monotonic in the 
interval considered. Correspondingly the magnitude of the velocity u at 

first decreases but then increases along lines r = const in the region 

between the singular characteristics. 

Fig. 4. Fig. 5. 

We now investigate the limiting case when the flow in the F$ plane 

is given by the K-curve extending in the opposite direction. In this case 

equation (1.8) has a simple solution: 

f=$AIz(5-331/:r)-$An,(3-~~)i (3.15) 

@antity A, is expressed in terms of constant A, by the formula 

A, = f(i- 3 l/j) A, (3.10) 
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From fonmrla (3.15) it follows that in this limitinp: case f' is less 
than zero everywhere, i.e. the velocity along F = const in the region 
of flow bounded by the singular characteristics, decreases monotonically. 

Since the flows mapped in the F$ plane by the portions of the K-curve 
extending in the forward and backward directions are finite, it is easy 
to establish the inequalities 

(3.17) 

The picture of the field of integral curves in the 5‘f is represented 
in Fig. 4. As follows immediately from equations (3.13) both boundary 
points Pft, ,fll and Q(5‘2i, fzi) 1 ie on the parabola f = 4p. ‘Ibe line 
f = l/4 A: + A,(, corresponding to continuous flow, and the line 
f = l/8 A12(7 - 3fi) - l/2 A,(3- dT)t, corresponding to flow with 
discontinuities in the first derivatives on both singular characteristics, 
are finite. All the other integral curves of equation (1.81 which have 
their origin at the point p and bounded derivative at the limits of the 
interval considered are situated between them. 

It is interesting to point out that in the case of flow with wesk dis- 
continuities on both singular characteristics the lines u = const are 
concave toward the oncoming stream in the region between the two character- 
istics. 

'Ihe line of zero radial velocity is also concave in the direction of 
subsonic velocities and is given by the equation 

The branch line, which is defined by the formula 

is, in contrast, concave with respect to the supersonic flow. Besides, 
it is easy to convince oneself that the Jacobian charges sign also on 
both singular co - characteristics. Therefore the mapping of the neighbor- 
hood of the nozzle center in the uu plane will be considerably more 
complicated in this case than in the case of the flow in analytical 
nozzles; the latter was shown in Fig. 5. 

'lhe flow patterns in the physical plane for the cases of continuous 
flow and flow with possible finite weak discontinuities are represented 
in Figs. 6 and 7 respectively. 

It is seen in these Fig.- that the shape of the throat of the nozzle 
(i.e. its narrowest part) in the case of the discontinuities in the deri- 
vatives of the characteristics is elongated considerably. 
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Fig. 6. Fig. 7. 

4. Plane nozzles. bt us consider briefly some of the properties 

of flows in plane nozzles. In this case the term v/r must be deleted from 

the equation of continuity. ‘The solution of the equation of motion can be 

looked for, as in the preceding investigation, in the form (1.7). ‘lhe 

equation analogous to equation (1.81, will take for form I3 3 : 

(f - 4E2) f’ + f’2+2Ef’ - 2i = 0 (4.1) 

Falkovich has derived affeneral integral of this equation C 3 I . 

It seems useful, however, to make use of the method of the “phase” Ft,b 
plane again, mentioned in Section 3, so that some of the properties of 
the flows investigated may be clarified. 

Since equation (4.1) differs from the equation (1.8) only in the 

coefficients of the last two terms, it is also invariant with respect to 

the group of transformations defined above. Making use of formulas (3.7), 

it can be reduced to the fonn 

dY Y2+7YF+6F2-IOY-6F 
dF = Y(4-F) (4.2) 

Ihe general picture of the field of integral curves of (4.2) is 

represented in Fig. 8, where the notation of the last section is used. 

‘lhe basic solution of equation (4.1) can be represented in the form 13 1 

f = $A2+ A: (4.3) 

As before, we shall call the representation of the basic solution in 
the Ft,b plane the K-curve; its equation will be 

Y=-(1+2Ff1/1+2F) (4.4) 

Motion along the K-curve in the direction indicated by the arrow (Fig. 
8) corresponds to flow in an analytical nozzle. As before, flows with 
discontinuities in the first derivatives of the velocity components across 
Mach lines are represented in the F$ plane by the curves originating and 
terminating in the point C. In the limiting case the flows with weak dis- 
continuities will map into the K-curve which goes in the opposite direction. 
If we move from the point C along an integral curve situated above the 
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K-curve, then for the correspondinK flow in the physical plane the func- 
tion f' becomes infinite. 

P’ 
-6 

-4 
\ 

\-2 

\” 
.I0 - 

-12 - 

-14- 

*16- 

-18- 

Fig. 8. 

Hence it is easy to derive the properties, which were first pointed 
out by Frank1 12 I, and which, as it was shown above, occurred in the 

cases of the stream in nozzles of revolution. Repeating the arguments of 

Section 3 it can be concluded that, generally speaking, the weak discon- 
tinuities along the Mach line, originated along the nozzle center and 

directed downstream, do not arise. ‘Ihe only exception is the limitiq 
case of flow which maps onto the K-curve extending in the opposite direc- 
tion; in such a flow the discontinuities in the first derivatives occur 

on both co-characteristics. In this case the solution of the equation 
(4.1) has the form: 

f = $A++A,5_ (4.5) 

‘Ihe constant A, is expressed then in terms of A, by the equation 

A,=$A, (4.6) 
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Hence we have [ 2 1 
1 \<A,/&,<4 (4.7) 

Also it is easily shown that in the case of the flows represented in 

the F+b plane by the curve originating and terminating in the point C, 

fi’ = 2il< 0, 12’ = 2i;>o 

Hence it follows, as before, that the velocity along the line r = 

const at first decreases, but then increases only in the region between 
the Mach lines originating at the center of the nozzle. In the case of 

flow with discontinuities in first derivatives on both co-characteristics 

the velocity in the region between them decreases monotonically, as is 
readily seen from equation (4.5). Further, the mwitude of the discon- 

tinuity [u, 1 on the CO-characteristic, if the constant A, is assuned, 

is expressed uniquely in terms of it. The behavior of the solutions of 

equation (4.1) will be qualitatively the same as that of the curves shown 

in FiR. 4, while patterns in the physical XF plane of flows in analytical 
nozzles and in nozzles with weak discontinuities on both singular co- 
characteristics will be similar to those shown in Fig. 6 and 7. ‘lhe 

character of the transformation from the XF plane to the uv plane in all 

the cases under consideration will be the same, because in the case of 

plane gas flows there exists in the hodograph plane a fixed net of 

characteristics, which does not depend on the solution of equations (1.1). 

From the character of the integral curves in the F$ plane in the neigh- 
borhood of the point C it is seen that discontinuities of the first 

derivatives on the co-characteristic (which we have called weak discon- 

tinuities everywhere) will reflect from the center of a plane nozzle 

along the co+ - characteristic in the form of the discontinuities in the 

second derivatives of the fluid velocity components. The weak discontin- 

uities along the co+ - characteristic will reflect from the center of a 
nozzle of revolution in the form of discontinuities in the third deriva- 

tives, In this sense the statement that the weak discontinuities are not 

reflected from the center of a nozzle, which was made above, is not 

exact. 

In conclusion we note the property, peculiar to plane flow, that the 

co - characteristics x = l/2 Ar2 coincide with the branch line. From 

equation (2.31 it is possible to deduce that the derivative d’rkdx’, 
which determines the curvature of the c-characteristics, becomes zero on 

the line L. Therefore every co- characteristic belonging to one family 
has its point of inflection on the above singular co-characteristic of 

another family. This property is due to the fact that in functions 

x(u,v), r(u,v) are not single-valued in the region bounded by the 

branches of the semicubic parabola v 2 = 4/9 h3. For each branch of the 

functions x(u,v), r(u,vl in this region the sense of concavity of the 

c - characteristics does not change along the entire length of the 
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branch line, which corresponds to the results of Khristianovich [ 1 1. 

Each of the singular characteristics r = + JT$X is also a locus of 
points at which the quantities II and u attain extreme values along the 

non-singular c-characteristics. Since the mapping of the physical plane 

on the hodograph plane is not one-to-one, the I’ - characteristics of one 

of the families extend in both forward and backward directions. ‘Ihis 

property is derived from the fact that the co-characteristic of one 

family is the last characteristic which connects any non-singular c - 

characteristic of the other family with the sonic line 15 1 . 

The author appreciates many discussions with S.A. Khristianovich which 

stimulated the present work. 
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